
Pergamon 
S0021--8928(96)00014-7 

J. Appl. Maths Mechs, Vol. 60, No. 1, pp. 105-112, 1996 
Copyright O 1996 Elsevier Science Ltd 

Printed in Great Britain. All fights reserved 
0021-8928/96 $24.00+0.00 

THE METHOD OF HOMOGENEOUS SOLUTIONS AND 
BIORTHOGONAL EXPANSIONS IN THE PLANE 

PROBLEM OF THE THEORY OF ELASTICITY 
FOR AN ORTHOTROPIC BODY1" 

V. V. V A S I L ' Y E V  and S. A.  L U R ' Y E  

Moscow 

(Received 28 July 1994) 

In connection with the solution of boundary-value problems of the theory of elasticity for an orthotropie strip the problem of 
expanding two different limiting functions in series in terms of the characteristic elements of the generalized eigenvalue problem 
is considered. A systera of functions biorthogonal to the system of characteristic elements is constructed. The double completeness 
of characteristic elements is proved. It is shown that the biorthogonality condition is equivalent to a generalized orthogonality 
relation of Papkovieh type. The form of systems of biorthogonal functions is established. For expansions of a special form the 
biorthogonal systems are identical with the systems of characteristic elements. Biorthogonal systems of functions are constructed 
corresponding to expansions of a general form. Using the biorthogonal systems obtained, explicit expressions for the expansion 
coefficients are found. An example demonstrating the existence of a non-trivial double null expansion is given. © 1996 Elsevier 
Science Ltd. All fights reserved. 

1. C H A R A C T E R I S T I C  E L E M E N T S  A N D  D O U B L E  E X P A N S I O N S  

We consider the plane problem of the theory of elasticity for a rectangular orthotropic strip in dimension- 
less coordinates x andy (I x I ~ 1, lY I ~< 1). The strip has a half-length a and a half-width b inx andy 
coordinates. Homogeneous boundary conditions are given on the longitudinal edgesy = + 1 of the strip. 

The solution of the resolving equation of the problem can be constructed as an expansion in terms 
of homogeneous solutions corresponding to the generalized biharmonic problem [1]. Henceforth we 
shall assume for simplicity that the problem is symmetric in the central coordinates x and y. Using the 
method of homogeneous solutions, we write 

tp(x,y)= ~. A,, ch)~nxF.(y)=tp,,(x,y ) (1.1) 
n=l 

for the stress fum.'tion, where %(x,y) is a partial solution, and F.(y) and ~ are the eigenftmctions and 
eigenvalues of the following eigenvalue problem [I] 

F.""+ 2p~.~F." + qZ,4Fn = 0 (1.2) 

y=+l :  F."+I3X2.F.=0, F.'"+0o~.2.F'=0 (1.3) 

Herep, q, ~ 15 are real constants. 
The eigenfunctions have the form 

F n (y)  = Uln (Y) + U2n (Y) 

Uin(Y) = f in  costi2gnY, CIn = a2 cos t2~'n, C2n = - a l  cos tl~'n 

(1.4) 

The eigenvalues ;~n are the roots of the characteristic equation 

W(~, )  = alb2t2 cos t lJLs in  t 2 ~ , -  a2bl t  I sin h;Z cos t2~, = 0 (1.5) 
a i = t 2 - ~ ,  b i = t? - Ix 
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We shall call um the characteristic elements. The eigenfunctions F~(y) satisfy the general orthogonality 
relation, which can be expressed as 

I 

ak~ = I [t~cluln (Y)Ulk (Y) -- t2C2U2, (y)u2k (Y)] dy = 
-1 

1 
= ~ [Din(y)Ctk cOstl~,ky- D2~(Y)C2k cost2~,ky]dy = 0, 2~, ~ ~k (1.6) 

-I 

c i = ~Ot + t 2 (t 2 - ~ - a) ,  Din (y)  = t?ciCin cos ti~,ny 

The generalized orthogonality relation enables us to obtain an exact solution of the problem concerned 
with the expansions 

t p i ( y )=  ~ an~,2nUin(Y), i =  1,2 (1.7)  
n=l 

the coefficients of which can be found from the formulae 

d. 
Ak = "~k--~2-~-a" dk = -~ [~Dtk(y)-~202k(y)]dy (1.8) 

Substitution of the stress functions into the boundary conditions at the ends x = - 1 of the region 
leads to the expansions 

~, An[rli(~'n)Uln(Y)+~l(kn)U2n(Y)]=. f l (Y) ,  (1 ~ 2) 
n=l 

where , (y)  are known functions and rli and ~ are certain entire even functions of ~ .  

(1.9) 

2. C O M P L E T E N E S S  OF A SYSTEM OF V E C T O R - V A L U E D  F U N C T I O N S  

We shall study the completeness of the system of generalized eigenfunctions. We note that the double 
completeness of the homogeneous functions {Fg(~,k,Y)}k k = 7, Fk(1) = ffk(1) = 0 was proved in [2] using 
the theory of quadratic bundles. 

Here, to prove completeness, we shall use the possibility of constructing a system of functions 
biorthogonal to the system under investigation [3], as well as the uniqueness theorem for entire functions 
[4]. 

The function ~F(~,) defined by (1.5) is an entire function of exponential type. Its type is equal to 
t~ = t l +  t2. 

We shall now consider the vector-valued function R = (ClcoS t lky, C2cos t2~,y). Let ~/(y) be square 
integrable functions in the interval (-1, 1). 

We consider the expressions 
0 

Xi0(L)= ~ Ci(~,)cost i~ ,x¥i(x)dx 
-0 

Proposition 1. If 0 ~< 1, then Xlo(~,) + X20(~,) is an entire function of exponential type, its type satisfying 
the inequality 6 ~< tl + t2. 

To prove this proposition we set ~, = u 1 -I- iu 2. Then, by Schwartz's inequality, we get 

Xt0 ~< ct2 exp[(t2 +0tl)[ ~1 ], X2o ~< [~exp[(tl + 0t2 )[ ~,l ] 

where (tl, o~ 2 and I~ are positive constants. The set of these inequalities proves the proposition. 

The double completeness will be proved using the well-known scheme [3]. We begin by proving that 
the vector-valued function R a = {Ral(L, y), Ra2(~, , y )} ,  (Ral(~, , y )  = a2ClCOS tl~,y , Ra2(~, , y)  -- a lC2cos  
t2ky) forms a closed kernel in Lz(-1, 1). This means that there is no finite vector-valued function ~(y) 

L2(-1, 1), ~: = {~:I(Y), ~:2(Y)} non-equivalent to zero if the equality 

1 
Ga(~,) = ~ [Ral(~, y ) l q ( y ) +  Ra2(~,, y)r ,2(y)]dy = 0 (2.1) 

-1 
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is satisfied. 
Here Ral(X, y) ,rod Ra2(X, y) (X E C, supp Rai(X, y) ~ [-1, 1], i = 1, 2) are functions generating the 

system Fa(Xk, y) = R~I(Xk, y) + Ra2(Xk, y) for X ~ qL The functions Ci(X) have been defined before. 

Proposition 2. "Eae vector-valued function Ra(X,y) is a dosed kernel in L2(-1, 1). In other words, the 
space of zeros of the functional Go(X) is closed in L2(-1, 1). 

Proof. Since the f~mctions Ci(2L) are such that Fa(X, 1) = 0 and r/(y) are finite functions, the solution of Eq. (2.1) 
in the space of Fourier transforms has the form 

Ft i X [ri (Y)] = COStlY, 

Correspondingly, the solution in the space of original functions is given by finite functions vanishing inside the 
interval (-1, 1), ~qO') = di[80' + 1) + 80' - 1)], where di are constants and 5( ) is the delta-function. It follows that 
Ra is a closed kerne]L in L2(-1, 1). 

Theorem 1. The system {Ra(~k, Y)}k*=l of vector-valued functions is complete in L2(-1 , 1). 

Proof. We take l~e function 
0 

So(X)= ~ Ra(X,Y)~C(y)dy, 
-0 

X~C, 0 < 0 < 1  

Here we assume that t: is a vector-valued function whose components r/(y) are finite functions from 
L2(-O, 0), (supp lqO, ) ~ [-0, 0], 0 < 0 < 1). 

Let the r,/(y) be such that 

S0(kk)=0, X k ¢~F (2.2) 

According to Proposition 1, So(Xk) is an entire function whose type does not exceed max(t I + 0t2, tl0 
+ t2) • On the other hand, each root of the entire function q~(X), whose type is equal to t 1 + t2, is, by 
assumption, a zero, of S0(X). By the uniqueness theorem for entire functions, we find that S0(X) -- 0 for 
0 < 1 Proposition 2, Ro(X, y) is a dosed kernel in L2(-1, 1). It follows that the system of vector-valued 
functions {Ra(~,y)}~= 1 is complete in L2(-1, 1). 

Remark. In exactly the same way one can prove the completeness of another system of vector-valued functions. 
This system, which satisfies the boundary conditions F" - n~.2F ' = 0 identically fory = __. 1, has the form 

Rb = {Rb~(Zk,y), Rh2 (Z~,y)}i*= t 

Rbl = b2D I costl~.ky, Rb2 = biD 2 cost2~,ky 

191 =-b2t 2 sint2~, k, 19 2 =-bit I sintl2k k 

CI =b i =t2i +n-b2t2sint2~. , C 2 =b#lsintl~. 

The completeness of the system of vector-valued functions {Ra(XO')}~*=l and {Rb(2Luy)}~*=l in L2(-1, 1) is equivalent 
to the double completeness of the system {R(~, Y)}k*=i. 

Now we consider the expression 

G(X) = ~_l I [U 1 (X, y)~ll I (y) + U 2 (X, y)~l/2 (y)] dy 

(ui(X,y) = Ci(~.)costiXy, i= 1,2) 

By the definition of CI(X) and C2(X ) and Proposition 1, G(X) is an entire function of exponential type. 
Its type is equal to tl + t2. We assume ~lk(Y) and ~2k(Y) to be such that 

i 2~P(X) 
G(X) = [ [ul(X,y)¥1k(y)+u2(X,y)W2k(y)]dY = (X 2 _" X2)~p,(Xk) (2.3) 

-1 
. |  

If this system of -functions exists, then one can say that a system of vector-valued functions 
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{~k}k*=x = {¥xk(Y), ~z~(Y)}k*=~ biorthogonal to {R(~)}T=I, ~, e ~F exists. Indeed, if i # k, then 
G(Tq) = 0, so that k /are  included among the zeros of ~(Z,). When i # k, then G ( ~ )  = 1 by (2.3). 

Comparison of the generalized orthogonality condition (1.6) with (2.3) leads to the idea of an alter- 
native treatment of the extended orthogonality relations for homogeneous functions as biorthogonality 
relations. One only needs to demonstrate that a biorthogonal system of vector-valued functions with 
the given properties exists. 

Theorem 2. There is a system of finite vector-valued functions {~tk(y)}~*= ~ = {Yak(Y), ~/2k(Y)}k*=l with 
supports coinciding with the interval [-1, 1] that are biorthogonal to the system of vector-valued functions 
{R(Z,k,y)}***=~, ~. e W generated by the eigenfunctions of problem (1.2), (1.3). 

Proof. We consider a function G(~,). Assuming that ~/lk(Y), ¥2k(Y) are finite functions, we write it as 

G(~,)= ~ [ul(~,,y)Wtk(Y)+U2(~,,Y)W2k(Y)]dY = 

= Cl (~)Fttx[~lk(y)] + C2(Z,)Ft:~[W2k(y)] = Cl(~,)Xik(~)+ C2(Z,)X2k(k) (2.4) 

Here Ftjx[¥~(Y)] is the integral transformation of Yu~(Y) with transformation parameter ri = rig, 
F~[¥/k(y)] = X~(ri) (i = 1, 2). The question of the existence of finite functions on (-1, 1) that 
are biorthogonal to the system has an affirmative answer if functions exists having the following 
properties: 

1. Xik(ri) must be entire functions of exponential type, their type being equal to 1, ri = ti k; 
2. Xik(ri) satisfy the equality 

2~W(k) 
Cl (~')Xlk (tl~') + C2 (~')X2k (t2 ~) = (~2 _ ~2 )tlj,(~,k ) (2.5) 

Such functions exist and have the form 

cos ti~, k [Rat (~'k' 1)gbi (~' 1) - gai 0~, 1)Rbl (2~k, 1)] 
X i k  ( t i L  ) = aik albi cos(tl~, k ) [(ti~,)2 _ (ti~,k )2 ] 

i =  1,2, 1= 1,2, t # l ,  ~, ,~ qJ 

(2.6) 

Here  alk and a2k are certain constants, which must be determined. 
It is obvious that Xik(ri), ri = ti~, (i = 1, 2) are entire functions of exponential type, their type being 

equal to one. By the Paley-Wiener theorem [5], W/k(Y) are finite functions with support ~ti(y ) e [-1, 1] 
( i =  1,2). 

We shall show that condition (2.5) is satisfied for a suitable choice of the coefficients au, in (2.6). Indeed, 
one can first verify that the expressions with the coefficients au, and a2k on the right-hand sides of (2.6) 
are equal, respectively, to the integrals 

1 

costi~.ycosti~,kydy, i=  1,2, ~'k eW 
-1 

On the other hand, in view of (2.4)-(2.7) and (2.6), we can write 

1 
-I (~"x) -D2k  u2( ' )1 ~2 _~2 alaZcostl~'kcOStz~'k (2.7) 

Comparison of the left- and right-hand sides of (2.6) and (2.7) enables us to determine the coefficients 

(-1)lcjkt2cj (2.8) 

aJk = [ala 2 cos tl~, k cos t2kkW'(~ k)] 
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j =  1,2, !=1,2,  l~j ,  Xk~ 
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Thus, we have proved the existence of a system of functions { ¥ a ( y ) ,  ¥2k(Y)}~*--1 finite in ( - 1 ,  1) and 
biorthogonal to the system {R(Zt, y)}[*= 1. The functions ¥~(Y)}k*=l can be defined as follows: 

e o  

F,, [~/~k (Y)] = X~t (r~), ¥it(Y) =Tn~ :. X~k (r/)c°s r~ydr~ (2.9) 

Corollary 1. Sincx: the system of functions (R(~k,y)}k'=l is doubly complete, it follows that the system 
{Vlk(Y), ¥2k(Y)}k'ffil defined by (2.9) is doubly complete and biorthogonal. 

Corollary 2. The biorthogonal system of functions {~/lk0'), ¥2t(Y)}k'= 1 is, by construction, equal to 
the system of vector-valued functions 

{clt21C1t costl~,ky, - c2t2C2t cos t2~.ky}k'_- I 

apart from certa~a coefficients. The biorthogonality condition is the same as the extended 
orthogonality relation, which is a generalization of the Papkovich orthogonality relations. 

The biorthogona! system of functions is defined by (2.6), (2.8) and (2.9). 
The biorthogonality conditions (2.3) or (2.7) can be used to determine the constants in the expansions 

of two different real-valued functions in terms of the homogeneous system of functions (1.7). We multiply 
the first equality (1..7) by ¥1k(Y) and the second one by ¥2k0'). Then we add the resulting expressions 
and integrate the result with respect to y from -1 to 1. Using the biorthogonality condition, we 
obtain 

I 

A t = ~ [ { p l ( Y ) ~ l ~ ( y ) + c p 2 ( Y ) ~ 2 k ( y ) ] d y  (2.10) 
-1  

By Corollary 2, the functions 

Wit (Y) = (-1) j ztcjC# cos tj~.ty 

and the multipliers Zk can be found using (2.7) using the formula 

1 
Z k = ala 2 costiX t cost2Zk~'(~, t) 

As a result, formula (2.10) takes the formAk = d~k. 
It can be shown that the resulting expression is exactly the same as formula (1.8) found using the 

corresponding extended orthogonality relations (1.6). 

3. N U L L - E X P A N S I O N S  

We shall show that a non-trivial double null expansion exists. Let tk be positive real numbers. Then, 
for example, the expansions 

f /=  ~, A k cos tiX~y, i - 1, 2 
k=i 

provide a double null expansion if we set 

Ak=sin2sIX#sin2s2Xt [ ( ~  ~2) 
X2t~F,(Xt) , sl,s 2 <- min , , si ~ O] 

Indeed, consider the first of the above expansions, 

)q (Y) = ~ sin2 $1~k sin 2 s2X k 
t=l X2tF'(Xt ) c°stIXkY 
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(summation is over sets of four eigenvalues __.~, ----~,k). Using the residue theorem, we can write 

sin 2 sl~, k sin 2 s2~.tc 1 lim ~Ct¢ ¢P(z,y)dz 
fl (Y) = k=l ~" ~2V'(~. k ) = 2~----~ R-*** 

where 

• sin2 Slzsin2 s2zc°sztly y ~ (-1,1) 
@(z, y) = z2 (tl sintlzcost2z _ t2 sint2zcostlz ) , 

and the integral is taken over a circle CR of sufficiently large radius that does not pass through the zeros of Ud(z) 
= hsin tlz cos t2z - t2sin t2z cos tlz. Applying Jordan's lemma, we find that 

lira ~C O(z,y)dz=0 
R-.l,*o R 

It follows thatfl(y) -- 0. 
Similarly one can prove that f~0, ) = 0. Thus, a non-trivial double null expansion in terms of the functions (cos 

t l ~O' }k**= l, {t2~,V}k*=l with non-zero coefficients Ak exists. 

4. B I O R T H O G O N A L  S Y S T E M S  OF F U N C T I O N S  
IN I N C O N S I S T E N T  E X P A N S I O N S  

Expansions (1.7) are often said to be consistent because their coefficients At  can be found using 
formally only the generalized orthogonality relation. It can be shown that expansions of this form 
correspond to a boundary-value problem that admits of an exact solution in terms of ordinary trigono- 
metric series. Here  we will not discuss the question of the convergence of series (1.7) with coefficients 
found from (1.8) corresponding to the functions on the left-hand sides. It was shown in [1] that an 
additional condition is required for convergence. 

We shall prove that the system of functions {~/k(Y)}k*=l provides a basis for constructing a special 
biorthogonal system of vector-valued functions corresponding to inconsistent expansions. 

We will first consider the simple case of inconsistent expansions 

tpl(y)= ~, Anl l l (~ ,n )Cincos t i~ ,ny  (1<-->2) 
n=l 

(4.1) 

where rli(~,) are certain polynomials of finite even degree 2/hi, respectively 

Yli(~') ----. ~/(~'), P/(~') = 2~ PiJ ~'2j' i = 1,2 
/=0 

We rewrite (4.1) in the form 

(4.2) 

q)l(Y) -- ~ Bn I CI n cos t lXny  ' (1 ~ 2)  (4 .3)  
.=l r12(~..) 

where Bn = l~l(~m)l~2(t~,n)an. 
fD ** We shall construct a system of vector-valued functions { lk0'), ttr~k(Y)}k_-i biorthogonal to the system 

of vector-valued functions {Tl~!(kn)Cl~COS h;q0', ~i-l(~)Cz~ cos t2;q0'}~*=l. Suppose that such a system of 
vector-valued functions exists. Then it must satisfy the biorthogonality relation 

u l ( y ) t ° l ~ ( Y )  ÷ u2(Y! # ( Y ) ] d y  = (4.4) 

We rewrite (4.4) in terms of Fourier transforms 
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{F~ [~1~ (Y)] F~ [o,:, k (y)] ~ 2~ ~F(k) 
q + q ,  (x)j = 

rh (x) 'v'(Xk)(x - 
(4.5) 

Comparing (2.5) and (4.5), it can be seen that the solution of (4.4) and, correspondingly, (4.5) has the 
form 

F~ [fOlk (y)] = r12 (X)Xlk (tl~,), (I ~ 2) 

where X~(k) are the solutions of (2.5) 
Being the Fourier transforms of ~F/k(Y) with parameter ri, respectively, X/k(rl) will be entire functions, 

the type of which is equal to one. This follows from (2.6). Since, by assumption, rli(k) are polynomials 
of finite degree ila 2L, formulae (2.6) and (4.5) imply that the Fourier transforms of tt~0, ) increase no 
faster than I X I q ~Ls I ~, I ---> ** for some finite q and are entire functions whose type is equal to one. 

Consequently, the assumptions of the Paley-Wiener-Sehwartz theorem [6] are satisfied, which implies 
that the inverse tJ'ansforms of Fn[W/k] (see (4.5)) are concentrated in the interval [-1, 1], i.e. they vanish 
outside [-1, 1]. The functions W/k themselves can be obtained by applying the corresponding differential 
operator to the generating finite functions ~t/k, 

t°lk(Y)=P2 ¥1k(Y), (1<--->2), d = t ~ y ,  i=4"L-~ (4.6) 

By construction, Wlk0') and W2k(y) form a biorthogonal system of finite functions, which vanish outside 
[-1, 1]. 

Consequently, the following theorem holds. 

Theorem 3.1. A system of functions {Wlk(Y), W2k(Y)}~*=l exists, biorthogonal to the vector-valued 
functions 

{ Cl (~,k )'q21(~,k ) COS tl~.ky, C2 (~,n )'qll (~,k ) COS t2~.ny}*~=l 

in the interval (-1, 1). 

Theorem 3.2. "[lae solution of the problem of the expansions (4.1) is given by 

1 

Anrllrl2 = J [tPl (Y)t°lk (Y) + q~2 (Y)tO2k (Y)] dy (4.7) 
-1  

The second assertion Of the theorem is obvious. 
We now consider the general expansion (1.9). Here, by analogy with the previous discussion, one 

can also establish the existence of a special system of functions {~(y) ,  1)2k(Y)}k*= 1 biorthogonal to the 
system of vector valued functions 

{(rll (~'k)ul k (Y) + ~1 (2Lk)u2~ (Y)), (112 (Lk)U2k (Y) + ¢2 (~'~)U| k (Y))}k*=l 

In the general case the construction of a biorthogonal system of functions follows the same scheme 
as before, except that the expansions (1.9) are first transformed into the form (4.1). As a result, we find 
that 

~lk = r12 lk +~2 w2k, (1 ~ 2) 

wik =At ~ ¥ik, Ai(d)=rli(d)'ql[, tl ) [. tt ) 

i-- 1,2, 1= 1,2, i ~ l  

(4.8) 
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It should be noted that if ¢h{~,) and ~(~) are analytic functions, then an assertion analogous to Theorem 
3 holds for the system { ~ ,  ~2k}~'=1. The general problem concerned with the expansions (1.9) admits 
of an exact solution using the formulae 

i 

AkAI (~'k)A2 (~'k) = ~ [J~ (Y)l)lk (Y) + f2 (Y)D2k (Y)] dy (4.9) 
-I 

Using the Paley-Wiener-Schwartz theorem and taking (4.8) into account, it can be shown that the 
formulae for the coefficients Ak found using (4.9) are in complete agreement with the corresponding 
formulae obtained in [1, 7] by other means. 

5. E X A M P L E  

The solution of plane problems of the theory of elasticity for a rectangular orthotropic strip as well as problems 
concerned with the bending of orthotropic rectangular plates can be reduced to expansions (1.9). As an example, 
we consider a semi-infinite strip, at the end of which is subject to serf-balanced normal and shear forces 

o 0 = o c o s  x y ,  x0 = O t l s i n  gY 

This problem can formally be considered as the limiting case of a finite strip [ 1]. Applying the method proposed 
in this paper, after some reduction we obtain the following simple expression for the coefficients An 

20b 2 
A. = ~.. (~2 _ th2)~V,(Xn) 

The solution can be written in the form 

q~(~,, y) = ~. Ane-~"X Fn (Y) 
n=l 
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